
Newspeak Language Presentation TUG

Newspeak, November 2014. Presentation at the
Toronto Smalltalk Users Group (TUG)

Presenter: Milan Zimmermann

How did it happen? Chatting at the end of our September TUG session, I
mentioned I have been playing with Newspeak. Bob Nemec said something like
“would you like to present it on our next meeting?”, and I said “yes”. Surely I
am not the best qualified to present Newspeak, but I enjoyed immensely over
the years reading Gilad Bracha’s Room 101 blog and more recently playing with
Newspeak.

A Note: This is a long document. I prepared it as a background for my talk, a
few days before the presentation realizing it is way longer than what I can do it
a 90 minute talk. The presentation was a rather small subset of this document.

Thanks TUG for giving me the opportunity to discuss Newspeak.

Credits: Gilad Bracha, all Newspeak authors and
contributors

Newspeak Authors

• Gilad Bracha

• Vassili Bykov

• Yaron Kashai

• Eliot Miranda

• Ryan Macnak

• contributors

1

http://gbracha.blogspot.ca

All misunderstandings, errors and unintended misrepresentations are mine.

See [References] for full references and credits.

Material of this presentation is based on ideas and sometimes copied from ma-
terial in the footnotes section.

Newspeak: Where to start learning it

If I was to point out two links to start, they would be:

1. Gilad Bracha’s blog site, Room 101, is always a great education.

2. Newspeak starting page is http://www.newspeaklanguage.org/

Newspeak: How to install

We will not go into much detail here, but provide two links

1. Direct easy install of the latest stable version (2013-09-14): http://www.
newspeaklanguage.org/downloads. This is the much easier way. Steps to
install :

• Download zip for your OS
• Unzip file to directory $NEWSPEAKDIR,
• run in shell or as appropriate: $NEWSPEAKDIR/nsvmlinux/nsvm
$NEWSPEAKDIR/ns-101.image

• (replace nsvmlinux with directory name for your OS)

2. Create your own latest boot image: Follow instructions at https:
//bitbucket.org/newspeaklanguage/nsboot_bleeding_edge

Using code from this presentation

As Newspeak changes, if you want to run code from this document unchanged,
please use the Newspeak version linked in the previous section (version from
2013-09-14).

If you are interested in code, not so much descriptions, explanations
etc, just scan this document for sections that look like code, and copy
/ paste it to the Newspeak IDE
You can paste code such as class definitions directly from this text into the
Newspeak Browser using following steps:

2

http://gbracha.blogspot.ca
http://www.newspeaklanguage.org/
http://www.newspeaklanguage.org/downloads
http://www.newspeaklanguage.org/downloads
https://bitbucket.org/newspeaklanguage/nsboot_bleeding_edge
https://bitbucket.org/newspeaklanguage/nsboot_bleeding_edge

• Tools -> Newspeak Browser

• Categories -> click AATUG (this category must be created first)

• Click the + beside the AATUG will bring the new class definer section

• In the above, select, delete, and paste in a class definition from this docu-

ment, for example

Newspeak: Behind the name - George Orwell’s
1984

Background to Newspeak name, settings, and references from George Orwell’s
1984. The name Newspeak, the name of Gilad Bracha’s blog site, Room 101,

3

http://gbracha.blogspot.ca

and references to The Ministry of Truth.

So direct quotes from Newspeak specs or articles in this presentation are some-
times introduced by “The Ministry of Truth claims”.

Links to sources are always provided at the beginning of chapters or inline.

The Case for Newspeak

I do not know when the idea of Newspeak first came, but, from my understand-
ing of reading Gilad Bracha’s blogs and articles is that his overall goal when
creating Newspeak was to create a language that is in the tradition of Self and
Smalltalk while being 1:

• Purely object oriented and message based

• Dynamic and reflective

• Modular and secure

• “Shrinkable”

• Utilizing sound results of CS research in the last 30+ years (actors, mir-
rors, etc - this is not stated but feels that way)

Gilad Bracha has built up a case for features included in Newspeak (with
arguments and discussion) in his blog Room 101 between 2007 and 2010 (blog
still continues).

• The blog is at Room 101 and is an excellent reading for everyone interested
in software languages and computing in general.

Who is Newspeak for?

• In 2, the Ministry of Truth says:

– “One of the things that has surprised me working with Newspeak is
how easy it is to convert Smalltalk code to Newspeak.”

– “Still, if you are (or were, in some happier time) a Smalltalker and
want to move into the future rather than dwelling on the glorious
past, I assert that Newspeak is for you. If you are using an open
source Smalltalk, it is likely you could do better using Newspeak.”

1The Newspeak Programming Language
2Converting Smalltalk to Newspeak

4

http://gbracha.blogspot.ca
http://www.newspeaklanguage.org/
http://gbracha.blogspot.ca/2010/07/converting-smalltalk-to-newspeak.html

– “Newspeak explicitly addresses Smalltalk’s weaknesses: modularity,
security, interoperability. Of course, some people aren’t bothered by
these weaknesses. ”

– “Newspeak should interest those who appreciate the power of
Smalltalk but want to move forward.”

– “Of course, you have to be an early adopter by nature. Things will
evolve and change under your feet. The syntax will become less
Smalltalk-ish over time . . . (in the end) Your code will be much
more maintainable and better structured.”

– As to “The syntax will become less Smalltalk-ish over time” - the
changes that are discussed include: braces instead of brackets, acces-
sibility control, replacing ˆ with return: - note the column - etc

So it seems Smalltalk users were/are the intended primary target group for
Newspeak.

To the presenter, Newspeak is a very interesting project that stimulates curiosity
and gives a chance to study a language designed by the best.

Migration from Smalltalk to Newspeak

• There is a document http://bracha.org/Smalltalk2NS2.pdf describing how
to convert Smalltalk code to Squeak.

• I do not have enough Newspeak to prove this on any sufficiently sized
program, but, according to The Ministry of Truth in , code converted
from Smalltalk to Newspeak:

– The converted code is better than the original.
– It becomes clear:

∗ what the code’s external dependencies are
∗ what the module boundaries should be
∗ who is responsible for initialization

– There is no longer any static state.
– Easier to tie libraries together (or tear them apart),
– Easier libraries independent testing
– Smalltalkers can migrate to Newspeak relatively easily.

I will do my best to show some of these points at least briefly on an example in
the modularity section.

5

http://bracha.org/Smalltalk2NS2.pdf

Newspeak - As Advertised - Highlights from the
Specs

This section and subsections is a “jot-dotted” summary of Newspeak highlights
in the Newspeak specs 3

High level ideas and goals for Newspeak. Newspeak is:

Newspeak is: Network Serviced (Supported by partially
implemented synchronization)

• Newspeak applications can be updated over the internet while running.

• The language supports orthogonal synchronization, making it straightfor-
ward to:

– synchronize persistent data with a remote server
– Support backup
– Share and collaborate.

• The synchronization features are in their early design stages, and only
partially implemented.

Newspeak is: Class based

Newspeak is: Message Based (and purely OO as a result)

• All computation - even an object’s own access to its internal structure -
is performed by sending messages to objects.

• The only run time operation is a message send (no assignments).

• Hence, everything in Newspeak is an object, from elementary data such
as numbers and booleans up to function, classes and modules.

Sidenote: It is an interesting exercise to think through how a purely message
based system supports the principles generally associated with Object Oriented
Languages and environment:

• Encapsulation

• Abstraction

• Polymorphism

• Inheritance
3Newspeak Programming Language Draft Specification Version 0.091

6

http://bracha.org/newspeak-spec.pdf

Newspeak is: Secure (Supported by encapsulation, no
static state)

• Newspeak objects encapsulate their representation, and Newspeak pro-
grams have no static state.

• These properties provide a sound basis for an object-capability security
model 4.

• An essential component of this vision is dynamically enforced access con-
trol, which is not yet implemented.

Newspeak is: Reflective (Mirror based reflection)

• Newspeak programs are causally connected to their executable represen-
tation via a reflective API.

• Reflection in Newspeak is mirror based, with mirrors acting as capabilities
- see Mirrors: Design principles for meta-level facilities of object-oriented
programming languages, http://bracha.org/mirrors.pdf

• Given access to the appropriate mirrors (and only given such access), a
running program and can both introspect and modify itself.

Newspeak is: Modular (Independent, immutable, paramet-
ric namespaces)

• Newspeak module definitions are independent, immutable, self-contained
parametric namespaces.

• They can be instantiated into modules which may be stateful and mutually
recursive.

• These modules are inherently re-entrant, because there is no static state
in Newspeak.

• All inter-module dependencies are explicit.

• Modules and their definitions are first class objects that can be manipu-
lated at run time.

4Towards a Unified Approach to Access Control and Concurrency Control

7

http://bracha.org/mirrors.pdf
https://www.cypherpunks.to/erights/talks/thesis/submitted/markm-thesis.pdf

Newspeak is: Concurrent (Actor based concurrency)

• Concurrency in Newspeak is based on actors.

• Actors:

– Are objects with their own thread of control.
– Share no state with other actors; they communicate exclusively via

asynchronous message passing.
– Are non-blocking, race-and-deadlock free, and scalable.

• Only a partial prototype has been implemented.

• Also note that the FFI (8.5) can undermine actor isolation as C can take
state passed from one actor, store it globally, and return it to another
actor. Non-blockingness also requires care, as a callback passed in by one
actor can be invoked when C is called by another. Must ensure that said
callback acts as a future, or fails (the former, to allow event processing).

• In an ideal world, one would only communicate with foreign languages run-
ning in a distinct actor. This would be more secure, and require less special
handling; this was part of the original vision of Smalltalk. Newspeak is
pragmatic in this regard; it remains idealistic, but only to an extent.

Newspeak is: Optionally typed Unimplemented

• Newspeak supports pluggable types - see 5 .

• This allows the language to be extended with arbitrary type systems.
These type systems are necessarily optional, and never affect run-time
semantics. They utilize Newspeak’s metadata facility (4.3), which allows
annotations to be attached to any node in a program’s abstract syntax
tree.

Newspeak - A few core principles

These two items are critical to allow some of the features described in the
previous section:

1. The only runtime operation is virtual method invocation (message
send in Smalltalk terminology)

• So there are no variable assignments
5Pluggable type systems

8

http://bracha.org/pluggable-types.pdf

• So even each object’s access to it’s internal structure uses method
invocation

2. All names are late bound (also follows from 1)

3. There is no global namespace

4. There is no static state (follows from 3)

For a better description and more details, see 6

Newspeak - Below the Surface - Details, discus-
sion, examples

Sections and statements of this paragraph are directly used from (or at least
inspired by) and other items in references.

Newspeak 101: How to define a class - basics

• In Newspeak, there is a standard text representation of class dec-
laration. It can be pasted in to create a class, or can be saved from
existing class. But let us first go to Newspeak.

– Open Newspeak, click Tools -> Newspeak Browser
– Go to an existing category, create a category AATUG (by clicking

+)
– Select AATUG, click on the + to add class, paste the class definitions

below. Repeat for each class.
– Newspeak simplest class declaration

(* Simplest possible class declaration. Note two sets of parenthesis *)
class Simple = () ()

(* Equivalent is: *)
class Simple1 = Object () ()

(* Another Equivalent is: *)
class Simple2 = Object () () : ()

(* Another Equivalent is: *)
class Simple3 = Object (||) () : ()

6Modules as Objects in Newspeak

9

http://bracha.org/newspeak-modules.pdf

(* What the above means: *)
class Simple4 = Object (instance initializer) (instance method definitions and nested classes definitions) : (class method definitions)

(* What the above means in detail - pseudocode: *)
class Simple5 = Object (|slotDefinitions|) (instance method definitions and nested classes definitions) : (class method definitions)

(* Again equivalent to (pseudocode, just indenting): *)
class Simple6 = Object (

|slotDefinitions|
) (

(* instance methods and nested classes definitions *)
) : (

(* class method definitions *)
)

– Unlike Smalltalk, Newspeak has a text representation of code - you
can paste the above code to the Newspeak IDE.

– ==> Paste the above to the Newspeak Browser - explain and store
classes.

∗ put all as top level class, quick nesting note regarding top level
classes

∗ Newspeak class declarations can be nested
∗ In the first bracket, slots are defined
∗ In the second bracket nested classes and instance methods are
defined

∗ So Newspeak has three kinds of members: slots, methods, and
(nested) classes.

∗ It is possible to override slots, classes and methods with each
other.

– ==> Open a workspace, highlight a code section and click “Evalu-
ate” the following expressions

∗ Simple ’Evaluate’
∗ Simple new ’Evaluate’

– ==> inspect evaluation results

Newspeak 101: The Newspeak Workspace

• ==> In workspace:

|x|
x == 20.

– Make sure always select everything you need to evaluate
– Use Evaluate, not ˆD

10

Newspeak 101: How to define a nested class (outer and
inner class)

• In Newspeak, classes can be nested hierarchically.

• In fact, nested classes are a cornerstone of Newspeak modularity.

• Nested classes enable the mantra “everything is an object”: In Newspeak,
all applications, and modules (libraries) are just classes - top
level classes.

• All class examples we have shown so far was a top level class, but in
practice almost everything you do in Newspeak lives in a deeper
level class- only applications and libraries(modules) are top level
classes.

(* Nested top level class (library) example *)

class CarLibrarySmall = Object () (
(* In the library instance section, define nested classes.

Car is a nested class in CarLibrary
*)
class Car = Object()()

)

Newspeak 101: Hello Brave new world (in Transcript) - An
example of Newspeak application

This section describes how to create a Newspeak application “Hello brave new
World”, following 7

• ==> Start in the Newspeak browser AATUG category, and click the +

icon:
Add this code:

class HelloBraveNewWorld usingPlatform: platform = Object (
|Transcript = platform blackMarket Transcript.|
Transcript open show: ’Hello, Oh Brave new world’.

)(
)

7Newspeak on Squeak - a guide to the perplexed

11

https://docs.google.com/viewer?url=http://bracha.org/newspeak-101.pdf

Click on the checkmark -

Several comments about the code:

• The code in () is initializer

• platform in the platform = (etc) is a parameter to the initilizer object.
platform object encapsulates the underlying platform

• blackMarket is a message to platform object. Black Market is a temporary
escape to the IDE’s global namespace - and provide access to things like
Squeak Transcript to which there are no Newspeak alternatives.

• The code in Transcript open show: ’Hello, Oh Brave new world’. will show
the string in the Transcript. Because this code is in the initializer of Hel-
loBraveNewWorld, it will be executed when HelloBraveNewWorld
is created.

• There is one slot, named Transcript, initialized from the platform object.

• Declaring Transcript in the initializer is , as the dependence on Transcript
is clearly localized to one point of declaration of the Transcript slot.

• Reader of the code can see all external dependencies of the HelloBrave-
NewWorld module in one place.

• This use of slots (of creating slots from external dependencies) is effectively
code import, and allows to rename imported elements where it makes
sense.

• How to run the Brave new World?

– ==> Open workspace and type in HelloBraveNewWorld usingPlat-
form: platform, then evaluate.

– Transcript will open, showing the message ’Hello, Oh Brave new
world’

– NOTE: if we did declare the application class as class HelloBrave-
NewWorld = Object (Transcript open show: ’Hello, Oh Brave new
world’.)(), running it would get a doesNotUnderstand, as there is
no way to access any system state (Transcript, output stream, etc)
without the system state being passed a parameter when the module
is initialized.

12

• TODO How is the platform object, when running in workspace, created?

Newspeak 101: How to define a more complex class - class
Thing and it’s subclass Car, both living in CarLibrary mod-
ule.

class CarLibrary = Object()(

class Thing = Object (
)(

(* instance methods, starting with a category string *)
’category misc’
printMe = (^ ’I am a thing.’.)
’category test’
testThis = (^ ’Testing a thing’.)

):(
’category on the class side’
aClassMethod = (^ ’I am a class method’.)

)

)

class CarLibrary = Object()(

(*
- This Car class introduces message pattern as part of the class definition.
- The message pattern /Car color: aColor/ is the *primary constructor for the class*.
- /aColor/ is a formal parameter, which is in scope in the class body
- The result of sending this message /color: aColor/ (to class Car) results in:

- executes the instance initializer code /color ::= aColor./
- creates a fresh car instance.

- The slot /color/ is accessed only through automatically generated getter (/color/) and setter (/color:/)
- Client example:

- Car color: ’blue’.
*)

class Car color: aColor = Thing (
(* initializer - section between vertical bars. *)
|
(* color is a slot. Slots are similar to instance variables, but they are never accessed directly,

only through automatically generated getters and setters. The getter name and usage is "color",
the setter name and usage is "color: newColor".
slots setters/getters exist (among others) to enforce "the only runtime operation is message send"

*)

13

color ::= aColor. (* ::= defines a mutable slot. If we used /color = aColor/, then color slot would be immutable *)
|

)(
(* instance methods *)
’category misc’
printMe = (^ ’I am a Car, my color is ’, color.)
printColor = (^ ’My color is ’, color.)

)

)

• Unlike Smalltalk, Newspeak has a text representation of code - you can
paste the above code to the Newspeak IDE.

• Paste Car and Thing under TugPresentation

• Note that after pasting the above to the Newspeak IDE, some things are
underlined, for example method names. This looks like a syntax error but
it is not - underline shows message names that may not be known and top
level class names.

• Also note that in the latest stable Newspeak, unlike various examples on
the web, the category string above method (’category misc’) is required
for the textual representation to work.

Newspeak 101: Newspeak Syntax in a nutshell

Below is an annotated and (over) colored example of a Newspeak class declara-
tion. See http://lively-kernel.org/repository/webwerkstatt/users/mzimmerm/
Projects/Newspeak/NewspeakSyntax.xhtml?forceInvalidateCache=1414792071362
for more details.

14

http://lively-kernel.org/repository/webwerkstatt/users/mzimmerm/Projects/Newspeak/NewspeakSyntax.xhtml?forceInvalidateCache=1414792071362
http://lively-kernel.org/repository/webwerkstatt/users/mzimmerm/Projects/Newspeak/NewspeakSyntax.xhtml?forceInvalidateCache=1414792071362

Syntactic Elements in the CarLibrary example above:

1. Class Declaration (line 2) [sec-11-6-1-1]
Let us ignore the outer class CarLibrary starting at line 1 and closing at
line 23.
On line 2, class RGBCar is declared. As part of the declaration, a con-
structor “rgbColor: aRgbColor” is declared. This would be used in client
code as

|car|
car: RGBCar rgbColor: ’#0000FF’. (* this code creates a new RGBCar and uses the auto-generated setter car: to the value*)
car printMe. (* would print ’I am a RGBCar, my rgbColor is #0000FF*)

If the section rgbColor: aRgbColor was cut out from the default construc-
tor on line 2, the class would define a default constructor “new”. That
would be used in client code as

|car|
car: RGBCar new. (* this code creates a new RGBCar with no color and uses the auto-generated setter car: to the value*)
car printMe. (* would produce ’I am a RGBCar, my rgbColor is null*)

RGBCar Extending Thing: Line 2 shows how RGBCar can extend class
Thing (declared elsewhere as part of CarLibrary). The string Thing can
be replaced with Object or nothing (which is equivalent to Object)

2. Initializer (lines 3-6): [sec-11-6-1-2]

15

On lines 3 to 6, initializer defines a slot rgbColor between vertical bars.
Slots are similar to instance variables, but they are, nowhere inside or out-
side of the class, accessed directly. Setters and getters are automatically
generating for slots. Inside the class body, lines 8-12, rgbColor value can
be obtained by using it as part of expression such as on line 10 (rgbColor
slot getter) , or set using rgbColor slot setter rgbColor: such as

rgbColor: ’#00FF00’.

3. Instance Body: Instance method and inner classes declarations (lines 8-12)
[sec-11-6-1-3]
In our example, only methods are defined: color and printMe

4. Class method declarations (class method can be considered an alternative
constructor) (lines 14-22) [sec-11-6-1-4]
One class method, RgbCar color: is defined. This could be used in client
code as

|car|
car: RGBCar color: ’blue’. (* this code creates a new RGBCar and uses the auto-generated setter car: to the value*)
car printMe. (* would print ’I am a RGBCar, my rgbColor is blue converted to RGB*)

5. Constructor (line 2) [sec-11-6-1-5]
The class declaration evaluates to a class object. Instances may only
be created by invoking a factory method on RgbCar. Every class has
a single primary factory, in this case rgbColor:. If no factory name is
given, it defaults to new. The primary factory method’s header is
declared immediately after the class name. The formal parameters of the
primary factory are in scope in the instance initializer. In lines 3-6, the
slot declarations include an initialization clause of the form ::= e where
e can be an arbitrary expression. In our example, the rgbColor slot is
initialized to the value of the formal parameter aRgbColor (rgbColor ::=
aRgbColor).

Newspeak 101: Opinion - Is the “=” character overused?

The = character can appear in the following syntactic context:

1. In the class declaration: See for example, line 1:

class CarLibrary = Object(...)(...)

2. In the method declaration: See for example, line 10:

16

public color = (^...)

3. In the initializer, to define a mutable slot: See line 5:

rgbColor ::= aRgbColor.

4. In the initializer, to define a immutable slot: No usage in the above ex-
ample, but it could be a line inserted after line 5:

numWheels = 4.

5. As an equality symbol =: No usage in the above example, but it could be
a line inserted after line 18:

(aRgbColor = aColor) ifTrue: [Transcript open show: ’ERR’] ifFalse: [Transcript open show: ’OK’]

6. As part of the object identity symbol, = - no example here but could
be used similar to the above substitute = for =

Newspeak 101: Representation independence

Newspeak objects are independent of their representation. We have changed
the layout of Car to RgbCar with two additions.
The RgbCar class has the same API as the Car class, because:
a) While RgbCar stores color internally as rgbColor, we provided the ability to
also create RgbCar from color, by making color: constructor - a class method
b) We preserved the Car interface by providing instance method “color” which
converts RgbCar’s rgbColor to color.
RgbCar should be now be renamed to Car, because RgbCar provides
a representation independent API with respect to color / rgbColor

Newspeak 101: Mutable vs. Immutable Slots

rgbColor slot on line 5 is mutable, defined as rgbColor ::= aRgbColor. Im-
mutable slot would be defined as rgbColor = aRgbColor.

Newspeak 101: Newspeak differences from Smalltalk

• Newspeak fields (slots) automatically define access methods

– So the only way to set or get a slot value is by invoking a method.
– And if a class changes and replaces the slot with a method that does

something more than access the slot, client code will not be affected
- code is representation independent.

17

From Modules as Objects in Newspeak (dot-jotted, emphasis added):

• Newspeak is a direct descendant of Smalltalk.

• Unlike Smalltalk Newspeak has an intentional, syntactic representa-
tion of classes; this is crucial in supporting nested classes, which are
not present in Smalltalk.

• Smalltalk has a global namespace and abundant static state. Most
fundamentally, Smalltalk distinguishes between method invocation
and variable access it is not a purely message based language.

• These differences lead to a different semantics of method lookup (cont).

From Message Based Programming (emphasis added)

(see http://gbracha.blogspot.ca/2007/05/message-based-programming.html)

• Smalltalk terminology refers to method invocations as message sends.
Message passing is often associated with asynchrony, but it doesn’t have
to be. Smalltalk message sends are synchronous. As such, they seem indis-
tinguishable from virtual method invocations. However, the terminology
matters.

• Insisting that objects communicate exclusively via message sends
rules out aberrations such as static methods, non-virtual meth-
ods, constructors and public fields. More than that: It means that
one cannot access another object’s internals - we have to send the object a
message. So when we say that an object encapsulates its data, encapsula-
tion can’t be interpreted as just bundling - it means data abstraction. Two
objects that respond the same way to all messages are indistinguishable,
regardless of their implementation details.

– We can nevertheless ask: is Smalltalk a message based programming
language? I think not. I would take message-based programming
to have an even stronger requirement: all computation is done via
message passing. That includes the computation done within a sin-
gle object as well. Whereas Smalltalk objects can access variables
and assign them, message based programming would require that an
object use messages internally as well. This is exactly what hap-
pens in Self, as I discussed in an earlier post about representation
independent code.

Newspeak Syntax notes (as different from Smalltalk)

• There are no assignment operator in Newspeak

18

http://gbracha.blogspot.ca/2007/05/message-based-programming.html

• ::= (initializer only), vs = (2 roles, function and class declaration, equal-
ity) vs :: vs == (identity) - these were already discused in a section above.

• More differences from Smalltalk:

– Refer to slides 11-20 (accent: slide 15) from 8 and discuss
– No Global variables, no assignment, no static (global) state.
– The only runtime operation is message send. In the example on slide

15:
∗ t:: looks like a variable but is a setter, automatically generated
(no assignment, all slot access in Newspeak is replaced with a
message send)

∗ Array must be implicitly passed to the application (no static)
– Class categories are a Smalltalk legacy that will likely be dropped in

the future
– Packages are likely to be removed as well.

Migration from Smalltalk to Newspeak

• There is a document http://bracha.org/Smalltalk2NS2.pdf describing how
to convert Smalltalk code to Squeak.

• I do not have enough Newspeak to prove this on any sufficiently sized
program, but, according to The Ministry of Truth in , code converted
from Smalltalk to Newspeak:

– The converted code is better than the original.
– It becomes clear:

∗ what the code’s external dependencies are
∗ what the module boundaries should be
∗ who is responsible for initialization

– There is no longer any static state.
– Easier to tie libraries together (or tear them apart),
– Easier libraries independent testing
– Smalltalkers can migrate to Newspeak relatively easily.

I will do my best to show some of these points on an example in the modularity
section.

8Newspeak: Evolving Smalltalk for the age of the Net

19

http://bracha.org/Smalltalk2NS2.pdf
http://www.slideshare.net/esug/8-gilad-brachaesug08

Gotchas

1. Some syntax is evolving. I think I saw on the web some examples using
a := b, replace that with a:: b (setter send). Note the :: must not be
separated by space.

2. See the notes on ::= vs = vs :: vs =() in this presentation in syntax notes
above

Newspeak - As Advertised - Expanding on the
Specs Highlights section

TODO Newspeak is: Network Serviced (Supported by par-
tially implemented synchronization)

Gilad Bracha describes his vision for objects as services (Serviced Objects =
SOBs), replacing the static-y web services with objects. Great reading:
9 and http://bracha.org/objectsAsSoftwareServices.pdf

How Newspeak solves Problems with constructors, and re-
moves any static state

• Having introduced Newspeak Basics, let us get back to:

– Newspeak highlights in detail,
– Showing some issues with Java and Smalltalk, concentrating on:

∗ Static global state (variables) issues
∗ Constructor issues

We will show how Newspeak resolves the issues elegantly

Newspeak is: Class Based (with constructor issues re-
moved)

In this section we concentrate on describing constructor and instance creation
deficiencies in Java and similar languages, but also Smalltalk, and show which
improvements were applied to Newspeak.

But first a few notes on why Newspeak is class based not prototype based:
9SOBs

20

http://bracha.org/objectsAsSoftwareServices.pdf
http://gbracha.blogspot.ca/2007/03/sobs.html

• Classes must be part of language; It was shown that JavaScript imple-
mentation of classes as libraries leads to fragmentation

• Briefly Describe Classes, Constructors, Objects, and their Definition.

Constructors and Instance Creations: Issues in Existing Languages
(Java, Smalltalk)

There is an important improvement in Newspeak regarding constructors.

In his Room 101 blog, Gilad Bracha describes:

• Weaknesses of and deficiencies of constructors in languages such as Java.

• Weaknesses of object creation in Smalltalk

Newspeak’s constructors (and also Dart to a degree) resolve the discussed con-
structor issues. - Most comments here are again inspired by and used from
Gilad Bracha’s Room 101 blog

• Constructors Considered Harmful 10

• Object Initialization and Construction Revisited 11

Constructor Example in pseudo-Java (similar to Groovy, C#, PHP)
- First hint at problems

Let us take a look at this pseudo-Java code:

class Thing {
// implicit extends Object,
// constructor can be implicit
Thing() {
}

}

// class declaration
class Car extends Thing {

// constructor
Car(String color) {

super(); // implicit
this.color = color.

10Constructors Considered Harmful
11Object Initialization and Construction Revisited

21

http://gbracha.blogspot.ca/2007/06/constructors-considered-harmful.html
http://gbracha.blogspot.ca/2007/08/object-initialization-and-construction.html

}
int countWheels() {

return 4;
}

}

// client code uses constructor this way:
Car c = new Car(’blue’); // This is not Object Oriented - no receiver

// client code sends a message this way:
int wheels = c.countWheels(); // This is Object Oriented: receiver.message()

Here we see a few issues:

• is new a method? what object is it called on?

• is Car(’blue’) a method invocation? what object is it called on?

Answer:

• new is not a message to any object

• Car(’blue’) is not a message to any object either

• Because there is no receiver

• Rather the “constructor construct” new Car(’blue’) is wired in as a special
case, in a way that does not match the message send OO pattern.

• So when we say Java is lacking because not everything is an object, it
is true, but the problem goes deeper - non uniformity and non-object
orientedness / receiver.message() syntax of some core constructs.

Constructors - more hints at problems

In Java (and similar languages), there are constructor issues like:

• Constructor cannot be overridden like instance methods (no target object,
so no dynamic dispatch).

• Constructor new Car(’blue’) cannot return an instance of another object
or cached or proxy object.

• All constructors need to call another constructor, or a superclass construc-
tor etc.

• Mixins are hard to implement in a language with constructors.

22

• Constructors are a major cause of need of dependency injection.

• Constructors are a major issue for testability: (new Car(’blue’) cannot
return a mock of a car).

Typical (Java) Solutions to constructor problems

• Use a static method makeCar(’blue’) on the same class on another class
(aka “factory method”):

CarFactory.makeCar(String color) { can return instance of Car, it’s subclass, a proxy or something else }

– But static methods in Java has similar problems:
∗ Static method has no runtime target object - are wired at compile
time => no abstraction via interface, no dynamic binding or
overriding

∗ see the static state section
∗ also see http://stackoverflow.com/questions/2223386/why-doesnt-java-allow-overriding-of-static-methods

• Ok, so what to use if not static methods? We can define a factory class
and make instances of it - this is OO

– But to create the factory class instance we need a constructor:

new CarFactory().makeCar(’blue’)

– so we are in a problem loop!

• A better solution is to use Dependency Injection (DI framework)

– That is reasonable, but requires an extra-lingual framework and adds
a dependency

– DI frameworks are workarounds for the lack of support in the under-
lying language

Smalltalk: Has a better approach to constructors - does not have
constructors in the above sense, but factory objects for instances.

• 30+years old, Smalltalk

• There are no constructors in Smalltalk, instead, there are factory
objects for instances (instance creators).

– This is a solution we were trying to show in the above Java-like
examples using factories.

23

http://stackoverflow.com/questions/2223386/why-doesnt-java-allow-overriding-of-static-methods

– In Smalltalk abstraction is preserved (we have an object as a target
for new).

– But inheritance instance initialization is not guaranteed - has to be
worked on, does not come for free, see the next heading.

• Saving the following Car class declaration creates the class object (=the
factory object for instances).

"Defining and saving Car"

Object subclass: #Car
instanceVariableNames: ’color’
classVariableNames: ’’
poolDictionaries: ’’
category: ’AAATUG’

"Unlike Java new Car(’blue’), or even CarFactory in /CarFactory.makeCar(’blue’)/, "
" Smalltalk Car class is an object, not just a static global name"
" Below, >>new is invoked on a target which is an object, instance of Car class, not a compile-time wired call"
myCar := Car new.

• The fact that Car class is an object allows abstraction and method lookup
etc.

Smalltalk: But there is another problem: no absolute guarantee that
myCar instance is initialized

In the Smalltalk Car definition, we defined instanceVariableNames: color to
illustrate this point.

• We want the Smalltalk car to be created initialized with it’s color.

• We do not want clients to call Car new.

myCar := Car new.
myCar printMe. "myCar’s color not initialized"

• To guarantee clients will not call Car new, we must override Behav-
ior>>new or Behavior>>initialize and throw exception in the override

• Otherwise, if Car new is used by clients, myCar color value is not initial-
ized

• The core issue here is that:

24

– the instance of Car class (the factory for car instances) is a sub-
class of Object class (the factory for object instances)

– along with method inheritance (new is inherited in the above case)
– lead to the unintended ability to partially initialize myCar with

color null if called as myCar := Car new.

• If this was not the case, Car class instance would not have access to Object
class instance new message!

• Solving the above issue, is the core to better constructors (in-
stance creators) in Newspeak, removing both the Java-ism issues
(no object target) and Smalltalk-ism issues (incomplete initial-
ization must be manually prevented).

Smalltalk: There is also no guarantee object is not initialized twice

Find an Example.

How Newspeak solves constructor deficiencies described above - an
example

• Newspeak combines Scala constructors with Smalltalk factory for
instances.

• But unlike Smalltalk, one cannot call a superclass’s constructors on a
subclass. This prevents clients from partially instantiating an object, say
by writing:
Car new. (* not visible and illegal as long as Car defines Car color: *)

Let us create a simple class in Java, Smalltalk and Newspeak: Thing and Car :

• In Smalltalk: Thing’s subclass Car

Thing: subclass Car
instanceVariableNames: ’color’
..etc..

’and class side method to create instances initialized with color’

Car>>initWith: aColor
|car|
car := Car new. "or self new; not self initialize"
car setColor: aColor.

^car.

25

– Smalltalk Problem: Unless special care is taken (overriding >>new),
client code can still call myCar = Car new and leave uninitialized
state (instance variable color)

• In Java: Car extends Thing

class Car extends Thing {
String color;
Car(String aColor) {

this.color = aColor;
}

}

– Java Problem(s):
∗ Java client call such as myCar = new Car(’blue’) will always be
wired to the concrete type Car causing issues with testability,
leading to need of Dependency Injection frameworkd.

∗ myCar = new Car(’blue’) is a wired-in non object oriented syntax
- new is not a message to a receiver object, cannot

• In Newspeak: class Car = Thing ()()

(*
- TODO - Repeat Car constructor from previous section here:

*)

• How is the Newspeak constructor different from the constructors in Java
and instance creators in Smalltalk, and how does it solve the issues dis-
cussed? A summary from :

– Because the Newspeak instance is created by sending a mes-
sage to an object, and not by a special construct like a constructor
invocation Java: car = new Car(’blue’), we can:

∗ Replace the receiver of that message with any object that re-
sponds to that message.

∗ The receiver can be another class, or it can be a factory object.
– But Newspeak also solves, without need to extra care in defining

Car, the Smalltalk initialization issues (non-initialization, multi-
ple utilization’s)

∗ Newspeak client code:
· Thing new printMe. #’I am a thing.’
· BUT: Car new printMe => Does not understand
Car>>new! which is good - Newspeak hid the ability
to call “new”

· SO: client use of Car color: ’blue’. is enforced instead of Car
new:
(Car color: ’blue’) printMe. ’I am a Car, my color is blue’

26

Newspeak methods that take class-factory as a parameter

Let us assume a factory method to make cars:

makeCar: carFactory = (
^carFactory color: ’blue’.

)

(* Can be called as *)
makeCar: Car

(* But also as *)

makeCar: RGBCar

(* Where *)
class CarLibrary = Object()(

class RGBCar rgbColor: aRgbColor = Thing (
(* initializer *)
|
rgbColor ::= aRgbColor.
|

)(
(* instance methods *)
’category convert rgbColor to string color’
public color = (^ rgbColor, ’converted to String name’) (* call some converter From RgbColor To String *)

’category show’
printMe = (^ ’I am a RGBCar, my rgbColor is ’, rgbColor.)

):(
(* class method which provides, for the RGBCar

an EQUIVALENT OF the /Car color:/ constructor,
But this method returns RGBCar.

*)
’secondary constructor for RGBCar’
public color: aColor = (

|aRgbColor |
aRgbColor: (aColor, ’ converted to RGB’). (* hack - should call a converter stringColorToRGB:*)

(* return instance or RGBCar *)
^rgbColor: aRgbColor

)
)

)

27

Clients may call the RGBCar using either one of the color: rgbColor construc-
tors, as follows:

(RGBCar rgbColor: ’#FFCCCC’) printMe -> ’I am a RGBCar, my rgbColor is #FFCCCC’

or

(RGBCar color: ’blue’) printMe. -> ’I am a RGBCar, my rgbColor is blue converted to RGB’.

The ability to take the Car class and create a different version of it, named
RGBCar is also an example of Representation Independence in Newspeak - we
can now delete Car, and rename RGBCar to Car, and no clients will notice ,
because:

1. Clients can still create the Car the same way as before (no need to change
the client code):

(renamed from RGB)Car color: ’blue’.

Because a “legacy” color: constructor was provided as a class method.

2. Clients can still send color to Car:

(renamed from RGB)Car color: ’blue’ color.

• This is because we provided, in RGBCar, the “legacy” color method

Altough note that we only pseudo-implemented the color method, the result
in our case is not 100% the same, but making it the same is just a matter of
mechanics of a converter between color and RGB col

Nested classes and Inner classes: Significance of nested classes and
examples

• We have shown an example of a nested class with more comments in
the section [Newspeak-101:-How-to-define-a-nested-class-outer-and-inner-
class]

• Nested classes are used (and needed) to implement plumbing often
“solved” by static state.

From 12

12On the Interaction of Method Lookup and Scope with Inheritance and Nesting

28

http://bracha.org/dyla.pdf

• “The only widely used language that supports such nesting is Java. Java
nested classes are used in very restricted, stylized ways. They are often
used simply for packaging; the nested classes are static and the scope of
the enclosing class is inaccessible to them so the issue does not arise. The
situation in Python is similar: nested classes have no access to the scope
of their enclosing class. Aggressive use of class nesting offers consider-
able possibilities. In addition to the classic techniques using nested and
especially virtual classes [MMP89] demonstrated by the Beta community,
nested classes can enable powerful features such as mixins, class
hierarchy inheritance and modules.”

• (But the actual mechanism how this happens is hard for me to understand,
see the reference above if you are interested)

Newspeak’s Inheritance is implemented using Mixins

We will only make a few notes without much reasoning, referring to once again:

1. In Newspeak, all names, including class names, are late bound

• So at runtime, there can be more than one instance of a class for
a class name (classes are virtual - this is different from other OO
languages such as Java or Smalltalk).

• Because of class declarations (and hence superclass declarations) are
virtual, all classes act as mixins.

• Because a module is just a top level class, also module definitions are
mixins

2. All nested classes are virtual

• So, also entire libraries/frameworks can be inherited, mixed-in, over-
ridden

Newspeak is: Message Based (and purely OO as a result)

We call Newspeak “message based”, because the only runtime operation in
Newspeak is virtual method invocation.

Discuss an interesting thought experiment why a purely message-based language
is also purely OO

A few summary notes on this subject:

• Newspeak is a Smalltalk successor: Everything is an Object

• Newspeak has no primitive types

29

• Newspeak eliminates special cases

• All names are late bound; every name is a dynamically dispatched method
invocation, even inside objects

• Everything is an object follows from “Everything is a virtual method in-
vocation”

Newspeak is: Secure (Supported by encapsulation, no
static state)

In this section we discuss unwelcomed consequences of static state, among them,
how static state affects security.

We define “static state” as /“presence of variables having global accessibility
and lifetime”/.

References for this section are from Room 101 static state entry 13 and other
links below.

Static State (Variables) has unwelcomed consequences

Static state (variables) have known issues, most of those mentioned here are
directly from

Static variables are:

• Bad for security: If your code is attacked, the attacker has access to
everything your code does, including static state. Attacker can do things
like:

– Smalltalk at: #Transcript put: TranscriptWhichForwardsToAt-
tacker. ’Smalltalk is static and holds other static state’

– And if your code logs credit card numbers, or social security etc ,
the attacker can read them. (Assume attacker code can reach out of
your network)

• (Mutable static variables) are bad for re-entrancy - see also http://en.
wikipedia.org/wiki/Reentrancy_%28computing%29

• Bad for concurrency (ability to run on multiple threads/cpus) - see the
above link as well

• Complicates memory management / garbage collection
13Cutting out Static

30

http://en.wikipedia.org/wiki/Reentrancy_%28computing%29
http://en.wikipedia.org/wiki/Reentrancy_%28computing%29
http://gbracha.blogspot.ca/2008/02/cutting-out-static.html

• Bad for startup time - I think this applies to static methods as well, code
using static methods must load the class etc.

• Bad for distributed systems, need to be at one place or constantly synced

• Bad for testability

The Ministry of Truth on Static State (Variables)

Quotes from Room 101 on static state :

"It may seem like you need static state, somewhere to start things off, but you
don’t. You start off by creating an object, and you keep your state in that object
and in objects it references. In Newspeak, those objects are modules.

Newspeak isn’t the only language to eliminate static state. E has also done so,
out of concern for security. And so has Scala, though its close cohabitation with
Java means Scala’s purity is easily violated. The bottom line, though, should
be clear. Static state will disappear from modern programming languages, and
should be eliminated from modern programming practice."

Functional programming eradicates all state (static or local) not just
static state as Newspeak does.

Eradicating all state is good but outside the scope of this discussion (as they
say to not enter wars)

But the world needs persistence, so need to pass state through some kind of IO
for persistence read/write. Proponents of “no state” rarely discuss this need.

It seems to me there always need to be a boundary where state needs to be
conveyed from and to a calculation (IO).

Note on Static Methods (not variables): Java (and other languages)
static Methods also have issues in common to constructor issues, that
makes both static methods and constructors not Object Oriented

• Why?

– In both cases, there is no runtime object that is a target of the
operation

– No runtime object, so no interface that can be used to describe the
operation (abstraction)

– No runtime object, so no dynamic binding

31

Newspeak is: Reflective (Mirror based reflection)

We will only refer to the Newspeak specs for details

Newspeak is: Modular (Independent, immutable, paramet-
ric namespaces) - Notes and Example Application (Car-
Race)

Points here are mostly from and

• A module declaration is a class declaration which is not nested in another
class expression

– Notes:
∗ The object a module declaration evaluates to is referred to as
module definition

∗ Module definitions are instantiated into stateful objects (called
modules)

• Module = Top level class

• Module has no access to surrounding namespace

• All names locally declared or inherited (from Object?)

• Factory method params are object-capabilities which determine what be-
longs to the per-module sandbox

• Multiple module instances can be created, with different module parame-
ters

• As everything in Newspeak Modules are objects, accessed via interface:

– Different implementations of module can coexist
– Modules cannot step on each other’s state

• Modules are re-entrant, because there is no static state. See also http:
//en.wikipedia.org/wiki/Reentrancy_%28computing%29

Modularity example: A simple Newspeak module (CarRace) which
is using other modules (DatetimeLibrary)

To discuss modularity in Newspeak, there are two important concepts: Nested
classes and Imports. We described class nesting before. We will show what
is meant by imports in this example.

32

http://en.wikipedia.org/wiki/Reentrancy_%28computing%29
http://en.wikipedia.org/wiki/Reentrancy_%28computing%29

Let us work out a simple example. Let us say we have a Newspeak module
CarRace. The module needs a DatetimeLibrary to calculate a difference between
“finish time” and “start time”.

Let us choose a datetime library (that we wrote) which has a bug in it. Call
this DatetimeLibraryBuggy.

Upon discovering the bug, we would like to switch to a different datetime library.
Call this DatetimeLibraryCorrect.

How can this be illustrated in Newspeak?

The buggy datetime library/module is a top level class:

(* A datetime library (module) with a bug - elapsed time returns a negative number.
Illustration only/

*)
class DatetimeLibraryBuggy = Object () (

class Datetime = Object (
(* No initializer code, no slots in this illustration example. *)

)(’misc’
(* Single method elapsedTimeBetween: and: - illustration only.

Result hardcoded to always return a negative 10 minutes as String
*)
elapsedTimeBetween: start and: finish = (^ ’-10 minutes’.)

)
)

The correct datetime library/module is a top level class as well:

(* A datetime library (module) without a bug - elapsed time returns a positive number.
Illustration only.

*)
class DatetimeLibraryCorrect = Object () (

class Datetime = Object (
(* No initializer code, no slots in this illustration example. *)

)(’misc’
(* Single method elapsedTimeBetween: and: - illustration only.

Result hardcoded to always return a positive 10 minutes as String - considered always correct for illustration.
*)
elapsedTimeBetween: start and: finish = (^ ’10 minutes’.)

)
)

The CarRace module (which is also a beginning of a Newspeak Application)

33

(* CarRace: a Newspeak module: Illustration of modularity, not a real example.
parameters platform, carLibrary and dateLibrary are the only way to pass
any piece of information to the module (no global or static state).

*)
class CarRace usingPlatform: platform usingCarLibrary: carLibrary usingDatetimeLibrary: datetimeLibrary = Object (

|
(* List (Car, Datetime, etc) each defines a slot.

List’s value (platform collections List) is a List class in the platform.
The slot definition of List and other slots function as an *import* statement, without a need for an /import/ keyword.
The platform is only in scope in the initializer - programmer must take action to get from it what is needed.
All modules’ external dependencies can all be gleaned in this initializer section.

*)
private List = platform collections List. (* unused *)
private Car = carLibrary Car.
private Datetime = datetimeLibrary Datetime.
private Transcript = platform blackMarket Transcript.
|

)(’misc’
runRace = (

|blueCar redCar blueStart blueFinish redStart redFinish|
blueCar: (Car color: ’blue’).
blueStart: ’10:25’.
blueFinish: ’10:35’.

redCar: (Car color: ’red’).
redStart: ’10:25’.
redFinish: ’10:35’.

Transcript open show:
’Tied race: Car with color ’, redCar color, ’ took ’, (Datetime new elapsedTimeBetween: redStart and: redFinish),

’ Car with color ’, blueCar color, ’ took ’, (Datetime new elapsedTimeBetween: blueStart and: blueFinish).
)

)

To run the CarRace client code using the buggy datetime library, paste the
following in workspace:

• ==>

|carRace|
carRace:: (CarRace usingPlatform: platform

usingCarLibrary: CarLibrary new
usingDatetimeLibrary: DatetimeLibraryBuggy new

).
carRace runRace.

34

Migrating client code to use the correct datetime library is a matter of switching
the imported module from DatetimeLibraryBuggy to DatetimeLibraryCorrect

• ==>

|carRace|
carRace:: (CarRace usingPlatform: platform

usingCarLibrary: CarLibrary new
usingDatetimeLibrary: DatetimeLibraryCorrect new

).
carRace runRace.

Modularity Example Continued: Converting the CarRace module
into a Newspeak Application

• A Newspeak application is an object conforming to a standard API. The
application API is defined by the presence of one instance method:
main:args:

• A Newspeak application can be deployed either as NOF file or as an
image. To deploy as a NOF file, the application must also define a class
method
packageUsing:

• We will glean the parameters passed to main:args: and packageUsing:
from the example.

• Let us create a CarRaceApp which main:args: method instantiates the
CarRace object, using the imported modules.

(* CarRaceApp is a Newspeak application, deployable as NOF file.

- The /packageUsing: topNamespace/ constructor allows to deploy as a NOF file.

- The /topNamespace/ is effectively the Newspeak namespace and allows
the application packager to wrap classes and objects into the NOF file

- The /main: platform args: systemArgs/ instance method turns the class into an application.
It’s presence is picked up by the Newspeak IDE which then adds facilities to run and package the app.
These facilities are the [deploy] and [run] clickable links on the top right of the class declaration.

*)

class CarRaceApp packageUsing: topNamespace = Object (
|

35

CarRace = topNamespace CarRace.
DatetimeLibraryCorrect = topNamespace DatetimeLibraryCorrect.
CarLibrary = topNamespace CarLibrary.
|

)(’turn class into application’
main: platform args: systemArgs = (
|carRace|
carRace:: (CarRace usingPlatform: platform

usingCarLibrary: CarLibrary new
usingDatetimeLibrary: DatetimeLibraryCorrect new

).
carRace runRace.
)

)

• Paste the above code for the CarRaceApp into a top level class. Notice
that on “accept” (clicking the checkmark or do Ctrl-S), two icons appear
on top of the class definition: [deploy] and [run]. State after accepting the
above code:

36

• Click on [run] and a Transcript showing Tied race: “Car with color red
took 10 minutes Car with color blue took 10 minutes” should show:

• Click on [deploy] and select “As NOF”. Notice that a CarRaceApp.nof file
appeared in the directory where Newspeak runs:

37

• How to Run the Application Saved in the NOF file?

– Currently, there appears no way to run the NOF from outside the
Newspeak IDE. I assume that is intended to be changed?

– To run the CarRaceApp.nof from inside the IDE, click on the Settings

wheel , and select “Run App”. A dialog will appear which allows
to select the NOF file.

– Notes:
∗ On NOF: Currently there seems to be no practical difference
between running from the Settings wheel and clicking on the
[run] link. I assume that will change and we will be able to run
the NOF file from the operating system outside the Newspeak
IDE(?).

∗ On other formats of creating an application. Clicking the [deploy]
link allows to choose from:

· as NOF
· as Packaged Image
· as Dart

38

· as JavaScript
The last two point to an exciting prospect of running your ap-
plication directly from the browser, but at this point there is not
enough documentation. I tried to generate the JavaScript ap-
plication and run from a web browser, but nothing was shown.
Need to spend more time on this.

Newspeak is: Concurrent (Actor based concurrency)

We will only refer to the Newspeak specs for details.

Only partial implementation of Actor system exists at this time

Newspeak is: Optionally typed Unimplemented

There are examples of typed code in Newspeak, but as I understand is not
implemented.

MemoryHole - Source Code Management in
Newspeak

All code in Newspeak, is (can) under the covers be managed in MemoryHole
(backed by Git or Mercurial)

• Because Newspeak has a code export in text format, users can also ignore
the MemoryHole, and save/load classes from files, using any source code
control

• To use MemoryHole link, need a Mercurial repo or Local Git repo - created
local git at: home/mzimmermann/software/newspeak/newspeak-2013-09-
14/tug-git-repo but the process does not work and ends up in an exception.

Footnotes, References and Credits [References]

Newspeak Authors

• Gilad Bracha

• Vassili Bykov

• Yaron Kashai

39

• Eliot Miranda

• Ryan Macnak

• contributors

References

This presentation uses and sometimes quotes directly from the references below.
All misunderstandings are mine.

• - Newspeak on Squeak - a guide to the perplexed - http://bracha.org/
newspeak-101.pdf

• - The Newspeak Programming Language (main page) - http:
//www.newspeaklanguage.org/

• - Modules as Objects in Newspeak - http://bracha.org/newspeak-modules.
pdf

• - Newspeak Programming Language Draft Specification Version 0.091.
http://bracha.org/newspeak-spec.pdf.

• - On the Interaction of Method Lookup and Scope with Inheritance and
Nesting - http://bracha.org/dyla.pdf

• - Pluggable type systems - http://bracha.org/pluggable-types.pdf

• 14 - Explorations in Next Generation Web Languages - presentation slides -
https://yow.eventer.com/yow-2013-1080/explorations-in-next-generation-web-languages-by-gilad-bracha-1431

• Gilad Bracha. Objects as Software Services. A Whitepaper - http://
bracha.org/objectsAsSoftwareServices.pdf

• Gilad Bracha. Selected Papers -

• - Cutting out Static - http://gbracha.blogspot.ca/2008/02/cutting-out-static.
html

• 15 - Room 101 - Representation Independent Code http://gbracha.
blogspot.ca/2007/01/representation-independent-code.html

• - Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, Baltimore, Maryland, USA, May 2006. Referenced from

14Explorations in Next Generation Web Languages - presentation slides
15Representation Independent Code

40

http://bracha.org/newspeak-101.pdf
http://bracha.org/newspeak-101.pdf
http://www.newspeaklanguage.org/
http://www.newspeaklanguage.org/
http://bracha.org/newspeak-modules.pdf
http://bracha.org/newspeak-modules.pdf
http://bracha.org/newspeak-spec.pdf
http://bracha.org/dyla.pdf
http://bracha.org/pluggable-types.pdf
https://yow.eventer.com/yow-2013-1080/explorations-in-next-generation-web-languages-by-gilad-bracha-1431
http://bracha.org/objectsAsSoftwareServices.pdf
http://bracha.org/objectsAsSoftwareServices.pdf
http://gbracha.blogspot.ca/2008/02/cutting-out-static.html
http://gbracha.blogspot.ca/2008/02/cutting-out-static.html
http://gbracha.blogspot.ca/2007/01/representation-independent-code.html
http://gbracha.blogspot.ca/2007/01/representation-independent-code.html
https://yow.eventer.com/yow-2013-1080/explorations-in-next-generation-web-languages-by-gilad-bracha-1431
http://gbracha.blogspot.ca/2007/01/representation-independent-code.html

• 16 - Gilad Bracha and David Ungar. Mirrors: Design principles for meta-
level facilities of object-oriented programming languages. Referenced from

• - Room 101 blog: SOBs - Serviced Objects (Objects as Software Services)
- http://gbracha.blogspot.ca/2007/03/sobs.html

• 17 - Room 101: Message base programming - http://gbracha.blogspot.ca/
2007/05/message-based-programming.html

• 18 - Room 101 blog (top level) - http://gbracha.blogspot.ca

• - Room 101 blog - http://gbracha.blogspot.ca/2007/06/constructors-considered-harmful.
html

• - Room 101 blog - http://gbracha.blogspot.ca/2007/08/object-initialization-and-construction.
html

• - Room 101 blog - http://gbracha.blogspot.ca/2010/07/converting-smalltalk-to-newspeak.
html

• - Newspeak and Dart Presentation - http://www.slideshare.net/esug/
8-gilad-brachaesug08

• Newspeak Wiki - https://bitbucket.org/newspeaklanguage/newspeak/
wiki/Home

• The Newspeak Forum and Mailing list - https://groups.google.com/
forum/#!forum/newspeaklanguage

• Objects as Modules in Newspeak: Phil Wadler’s Blog. - http://wadler.
blogspot.ca/2009/08/objects-as-modules-in-newspeak.html

Licence

This file is licensed under Creative Commons Attribution ShareAlike 3.0: http:
//creativecommons.org/licenses/by-sa/3.0/

How to make the Pdf

C-c C-e l p , then run

pandoc -f latex newspeak-TUG-presentation-full-version.tex -o newspeak-TUG-
presentation-full-version.pdf

16Mirrors: Design principles for meta-level facilities of object-oriented programming lan-
guages

17Message base programming
18Room 101

41

http://gbracha.blogspot.ca/2007/03/sobs.html
http://gbracha.blogspot.ca/2007/05/message-based-programming.html
http://gbracha.blogspot.ca/2007/05/message-based-programming.html
http://gbracha.blogspot.ca
http://gbracha.blogspot.ca/2007/06/constructors-considered-harmful.html
http://gbracha.blogspot.ca/2007/06/constructors-considered-harmful.html
http://gbracha.blogspot.ca/2007/08/object-initialization-and-construction.html
http://gbracha.blogspot.ca/2007/08/object-initialization-and-construction.html
http://gbracha.blogspot.ca/2010/07/converting-smalltalk-to-newspeak.html
http://gbracha.blogspot.ca/2010/07/converting-smalltalk-to-newspeak.html
http://www.slideshare.net/esug/8-gilad-brachaesug08
http://www.slideshare.net/esug/8-gilad-brachaesug08
https://bitbucket.org/newspeaklanguage/newspeak/wiki/Home
https://bitbucket.org/newspeaklanguage/newspeak/wiki/Home
https://groups.google.com/forum/#!forum/newspeaklanguage
https://groups.google.com/forum/#!forum/newspeaklanguage
http://wadler.blogspot.ca/2009/08/objects-as-modules-in-newspeak.html
http://wadler.blogspot.ca/2009/08/objects-as-modules-in-newspeak.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://bracha.org/mirrors.pdf
http://bracha.org/mirrors.pdf
http://gbracha.blogspot.ca/2007/05/message-based-programming.html
http://gbracha.blogspot.ca

	Newspeak, November 2014. Presentation at the Toronto Smalltalk Users Group (TUG)
	Credits: Gilad Bracha, all Newspeak authors and contributors
	Newspeak: Where to start learning it
	Newspeak: How to install
	Using code from this presentation
	Newspeak: Behind the name - George Orwell's 1984
	The Case for Newspeak
	Who is Newspeak for?
	Migration from Smalltalk to Newspeak

	Newspeak - As Advertised - Highlights from the Specs
	Newspeak is: Network Serviced (Supported by partially implemented synchronization)
	Newspeak is: Class based
	Newspeak is: Message Based (and purely OO as a result)
	Newspeak is: Secure (Supported by encapsulation, no static state)
	Newspeak is: Reflective (Mirror based reflection)
	Newspeak is: Modular (Independent, immutable, parametric namespaces)
	Newspeak is: Concurrent (Actor based concurrency)
	Newspeak is: Optionally typed Unimplemented

	Newspeak - A few core principles
	Newspeak - Below the Surface - Details, discussion, examples
	Newspeak 101: How to define a class - basics
	Newspeak 101: The Newspeak Workspace
	Newspeak 101: How to define a nested class (outer and inner class)
	Newspeak 101: Hello Brave new world (in Transcript) - An example of Newspeak application
	Newspeak 101: How to define a more complex class - class Thing and it's subclass Car, both living in CarLibrary module.
	Newspeak 101: Newspeak Syntax in a nutshell
	Syntactic Elements in the CarLibrary example above:

	Newspeak 101: Opinion - Is the ``='' character overused?
	Newspeak 101: Representation independence
	Newspeak 101: Mutable vs. Immutable Slots
	Newspeak 101: Newspeak differences from Smalltalk
	From Modules as Objects in Newspeak (dot-jotted, emphasis added):
	From Message Based Programming (emphasis added)
	Newspeak Syntax notes (as different from Smalltalk)
	Migration from Smalltalk to Newspeak
	Gotchas

	Newspeak - As Advertised - Expanding on the Specs Highlights section
	TODO Newspeak is: Network Serviced (Supported by partially implemented synchronization)
	How Newspeak solves Problems with constructors, and removes any static state
	Newspeak is: Class Based (with constructor issues removed)
	Constructors and Instance Creations: Issues in Existing Languages (Java, Smalltalk)
	Constructor Example in pseudo-Java (similar to Groovy, C#, PHP) - First hint at problems
	Constructors - more hints at problems
	Typical (Java) Solutions to constructor problems
	Smalltalk: Has a better approach to constructors - does not have constructors in the above sense, but factory objects for instances.
	Smalltalk: But there is another problem: no absolute guarantee that myCar instance is initialized
	Smalltalk: There is also no guarantee object is not initialized twice
	How Newspeak solves constructor deficiencies described above - an example
	Newspeak methods that take class-factory as a parameter
	Nested classes and Inner classes: Significance of nested classes and examples
	Newspeak's Inheritance is implemented using Mixins

	Newspeak is: Message Based (and purely OO as a result)
	Newspeak is: Secure (Supported by encapsulation, no static state)
	Static State (Variables) has unwelcomed consequences
	The Ministry of Truth on Static State (Variables)
	Functional programming eradicates all state (static or local) not just static state as Newspeak does.
	Note on Static Methods (not variables): Java (and other languages) static Methods also have issues in common to constructor issues, that makes both static methods and constructors not Object Oriented

	Newspeak is: Reflective (Mirror based reflection)
	Newspeak is: Modular (Independent, immutable, parametric namespaces) - Notes and Example Application (CarRace)
	Modularity example: A simple Newspeak module (CarRace) which is using other modules (DatetimeLibrary)
	Modularity Example Continued: Converting the CarRace module into a Newspeak Application

	Newspeak is: Concurrent (Actor based concurrency)
	Newspeak is: Optionally typed Unimplemented

	MemoryHole - Source Code Management in Newspeak
	Footnotes, References and Credits [References]
	Newspeak Authors
	References

	Licence
	How to make the Pdf

